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Abstract
Canonical coherent states can be written as infinite series in powers of a single
complex number z and a positive integer ρ(m). The requirement that these
states realize a resolution of the identity typically results in a moment problem,
where the moments form the positive sequence of real numbers {ρ(m)}∞m=0. In
this paper we obtain new classes of vector coherent states by simultaneously
replacing the complex number z and the moments ρ(m) of the canonical
coherent states by n × n matrices. Associated oscillator algebras are discussed
with the aid of a generalized matrix factorial. Two physical examples are
discussed. In the first example coherent states are obtained for the Jaynes–
Cummings model in the weak coupling limit and some physical properties are
discussed in terms of the constructed coherent states. In the second example
coherent states are obtained for a conditionally exactly solvable supersymmetric
radial harmonic oscillator.

PACS numbers: 02.20.−a, 03.65.Fd

1. Introduction

Overcomplete family of vectors of Hilbert spaces play a pivotal role in quantum theories,
signal and image analysis. The most fundamental component in the analysis of the states in
quantum Hilbert space of a physical problem is an overcomplete family of vectors known as
coherent states (CS). The wide use of CS in quantum theories and in other scientific areas
has developed the theory of CS to a tremendous extent. Connections between CS and group
representations, orthogonal polynomials and Lie algebras have been studied extensively [1–5].

It is understood that the well-known canonical CS of the harmonic oscillator are described
equivalently as eigenstates of the usual bosonic annihilation operator, the trajectory of a
displacement operator acting on a fundamental state and as minimum uncertainty states.
However, what we observe in different generalizations of the canonical CS is that the preceding
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equivalence is no longer present. For example, the Barut–Girardello CS are not minimum
uncertainty states but they satisfy the other two properties [6, 3]. Moreover, classes of CS
were derived as eigenstates of certain operators associated with Hamiltonians [7, 8]. Most of
the CS given in [9] can only be seen as an eigenstate of a generalized annihilation operator.
There are several papers in the literature where CS are obtained by defining them as minimum
uncertainty states, for example see [10].

Properties of the harmonic oscillator canonical CS are well known. In generalizing the
definition of the canonical CS we always intend to keep as many properties of the canonical
CS as possible. There are a number of generalized definitions for a set of CS; for different
approaches see [1–3, 11–14]. In this paper we follow the following generalization of the
canonical CS and generalize it a step further.

Definition 1.1. Let H be a separable Hilbert space with an orthonormal basis {φm}∞m=0 and
C be the complex plane. For z ∈ D, an open subset of C, the states

|z〉 = N(|z|)−1/2
∞∑

m=0

zm

√
ρ(m)

φm ∈ H (1.1)

are said to form a set of coherent states if the following conditions hold:

(i) for each z ∈ D, the state |z〉 is normalized, that is, 〈z | z〉 = 1;
(ii) the set, {|z〉 : z ∈ D} permits a resolution of the identity, that is,∫

D

|z〉〈z| dµ = I, (1.2)

where N(|z|) is a normalization factor, {ρ(m)}∞m=0 is a positive sequence of real numbers and
dµ is an appropriately chosen measure on D.

Vector coherent states are well-known mathematical objects, often they are defined as
orbits of vectors under the operators of unitary representations of groups [1, 15]. However, in
[13] vector coherent states (VCS) were developed as n component vectors in a Hilbert space
C

n ⊗ H by replacing the complex variable z of (1.1) by an n × n matrix

Z = A(r) eiζ�(k), (1.3)

where A(r) and �(k) are n × n matrices such that

[A(r),A(r)†] = 0, �(k) = �(k)†, [A(r),�(k)] = 0, (1.4)

where the variables r, k and ζ live in appropriate measure spaces, and M† stands for the
transposed complex conjugate of the matrix M. In [14] as a further generalization of [13] VCS
were studied as infinite component vectors in a suitable Hilbert space. The term VCS was
used in [13, 14] to describe that when the complex number z of definition 1.1 is replaced by
an n × n square matrix we obtain CS as n component vectors. However, in [13] for some
particular cases the link to a group representation was derived.

The physical motivation of the generalization given in this paper is the construction of
CS for multi-level quantum systems with non-degenerate discrete spectrum. In the literature,
for two-level atoms CS were constructed in the form of (1.1) to each level [16]. In the present
scheme, using matrices, we develop a more systematic method for deriving CS for multi-level
quantum systems with non-degenerate infinite energy spectrum. We shall also apply the same
method to construct CS for supersymmetric Hamiltonians with non-degenerate energies. Here
again the method is different from those appearing in the literature (see section 5.2).

The simplest model in use for the description of a single two-level atom interacting
with a single cavity mode of the electromagnetic field is the Jaynes–Cummings (JC) model.
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This model is exactly solvable in the rotating wave approximation, where one may use the
diagonalization technique to solve it [16]. If one neglects losses, multi-mode multi-level
generalizations of the JC can be solved exactly using the exact solvability of the JC [17–
19]. Suppose we have a diagonalizable Hamiltonian H for a n-level atom in a single-mode
cavity field with non-degenerate energies Ek

m and wavefunctions ψk
m, k = 1, 2, . . . , n;m =

0, 1, 2, . . . ,∞. Let xk
m = Ek

m − Ek
0; k = 1, . . . , n. Let R(m) = diag

(
x1

m!, . . . , xn
m!

)
and

Z = diag(z1, . . . , zn) be diagonal matrices, where xk
m! = xk

1 . . . xk
m is the generalized factorial.

Assume that the following vectors are normalized and satisfy a resolution of the identity:

|Z, k〉 = N(Z)−
1
2

∞∑
m=0

R(m)−
1
2 Zm�k

m; k = 1, 2, . . . , n (1.5)

where �k
m := (0, . . . , 0, ψk

m, 0, . . . , 0), and ψk
m is placed in the kth position. The collection

of vectors (1.5) forms a set of CS for the diagonalized Hamiltonian HD . A general set of CS
for the Hamiltonian HD can be written as

|Z〉 =
n∑

k=1

ck|Z, k〉 with
n∑

k=1

|ck|2 = 1.

Further, if O is the diagonalization operator such that H = OHDO† then the above sets of
CS can be transformed as CS of H with the aid of the operator O. A similar argument for a
two-level system leading to the quaternionic VCS of [13] was given in [14].

The states (1.5) can be considered as a generalization of (1.1), in which the complex
number z and the positive sequence of real numbers ρ(m) are replaced by n × n diagonal
matrices. Motivated from the above discussion, in this paper, as a generalization to definition
1.1 and to [13], we construct VCS by replacing both the complex variable z and the positive
numbers ρ(m) by n × n matrices Z and R(m), respectively. To be more general, we will
carry out our construction with more general matrices than the diagonal ones. In order to
be consistent with one of the three equivalent definitions of the canonical CS we introduce
an oscillator algebra by defining a matrix factorial and realize the VCS as eigenstates of a
generalized annihilation operator. As a physical example of the construction, the JC model in
quantum optics can be taken. We shall justify this claim in section 5 and use the constructed
VCS to obtain various physical quantities associated with the problem. These quantities may
be used to justify the validity of the construction. Apart from quantum mechanical point
of view, the following sets of VCS are continuous tight frames and thereby they may find
applications in multi-channel signal processing.

Since we have replaced z and ρ(m) by matrices, and matrices do not commute in general,
the order in which the products of matrices are computed is primordial, that is, we can choose
either the order R(m)Zm or ZmR(m) (that we will call from now on ‘R–Z ordering’ and ‘Z–R
ordering’, or, abusively, ‘R–Z representation’ and ‘Z–R representation’). Whatever the choice
is, the construction of VCS ends up with a matrix moment problem. However, a crucial fact
appears: according to the ‘representation’ used, the construction of CS may succeed in one
case and fail in the other case.

2. VCS with the R–Z ordering

Let r ∈ [0,∞) and ζ ∈ [0, 2π). Let A(r) and R(m) be n×n matrices. Set Z = A(r) eiζ . Let
χ1, . . . , χn be the canonical orthonormal basis of C

n and {φm}∞m=0 be an orthonormal basis of an
abstract separable Hilbert space H. Let Ĥ = C

n ⊗ H. Then, {χj ⊗φm : j = 1, . . . , n,m ∈ N}
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is an orthonormal basis of Ĥ. Define the set of states

|Z, j 〉 = N(|Z|)−1/2
∞∑

m=0

R(m)Zmχj ⊗ φm ∈ Ĥ, j = 1, 2, . . . , n, (2.1)

and denote

|M| = [MM†]1/2 = [M†M]1/2. (2.2)

Theorem 2.1. The states in (2.1) are VCS in the sense that they satisfy the normalization
condition and realize a resolution of the identity, that is,

n∑
j=1

〈Z, j | Z, j 〉 = 1, (2.3)

∫ ∞

0

∫ 2π

0

n∑
j=1

|Z, j 〉〈Z, j |W(|Z|) dµ = In ⊗ I, (2.4)

provided that

N(|Z|) =
∞∑

m=0

Tr{[R(m)A(r)m]†[R(m)A(r)m]} =
∞∑

m=0

Tr|R(m)A(r)m|2 < ∞, (2.5)

and

2π

∫ ∞

0
N(|Z|)−1[R(m)A(r)m][R(m)A(r)m]†W(|Z|) dν = In, (2.6)

where dν and dµ are appropriate measures on [0,∞) and [0,∞) × [0, 2π) respectively, and
W(|Z|) is a positive weight function.

Proof. We have that
n∑

j=0

〈Z, j | Z, j 〉 = N(|Z|)−1
n∑

j=0

∞∑
m=0

∞∑
l=0

〈R(m)Zmχj | R(l)Zlχj 〉Cn〈φm | φl〉H

= N(|Z|)−1
∞∑

m=0

Tr|R(m)A(r)m|2 = 1.

On the other hand, for dµ = dν dζ , we have∫ ∞

0

∫ 2π

0

n∑
j=1

|Z, j 〉〈Z, j |W(|Z|) dµ

=
n∑

j=1

∞∑
m=0

∞∑
l=0

∫ ∞

0

∫ 2π

0
N(|Z|)−1|R(m)Zmχj ⊗ φm〉〈R(l)Zlχj ⊗ φl|W(|Z|) dµ

=
∞∑

m=0

∞∑
l=0

∫ ∞

0

∫ 2π

0
N(|Z|)−1[R(m)Zm]

 n∑
j=1

|χj 〉〈χj |


× [R(l)Zl]†W(|Z|) ⊗ |φm〉〈φl| dµ

=
∞∑

m=0

∞∑
l=0

∫ ∞

0

∫ 2π

0
ei(m−l)ζ N(|Z|)−1[R(m)A(r)m]

× [R(l)A(r)l]†W(|Z|) ⊗ |φm〉〈φl| dµ
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=
∞∑

m=0

[
2π

∫ ∞

0
N(|Z|)−1[R(m)A(r)m][R(m)A(r)m]†W(|Z|) dν

]
⊗ |φm〉〈φm|

= In ⊗
∞∑

m=0

|φm〉〈φm| = In ⊗ I,

where we have used the following facts:

n∑
j=1

|χj 〉〈χj | = In,

∫ 2π

0
ei(m−l)ζ dζ =

{
0 if m �= l

2π if m = l,

and condition (2.6). �

Before moving to examples let us make a comment. In general, the ρ(m) of (1.1) form a
positive sequence of real numbers. In the examples exhibited hereafter, some of the entries of
the matrix R(m) contain negative values. These values do not violate the basic definition of
moment problems as long as we recover the classical schemes of moment problems.

Example 2.2. Let x be a fixed real number, r ∈ [0,∞), and ζ ∈ [0, 2π). Set

Z =
(

cos x −sin x

sin x cos x

)(
λ(r) 0

0 µ(r)

) (
cos x −sin x

sin x cos x

)T

eiζ , (2.7)

and

R(m) =
(

ρ1(m) cot x ρ1(m)

ρ2(m) −ρ2(m) cot x

)
. (2.8)

Then,

R(m)Zm = eimζ

(
ρ1(m)λ(r)m cot x ρ1(m)λ(r)m

ρ2(m)µ(r)m −ρ2(m)µ(r)m cot x

)
,

and

[R(m)Zm][R(m)Zm]† =
(

ρ1(m)2λ(r)2m csc2 x 0
0 ρ2(m)2µ(r)2m csc2 x

)
.

Because of the properties of the trace, there is no need to compute [R(m)Zm]†[R(m)Zm]
before knowing its trace, since, even though the two matrices are different, they have the same
trace. Hence,

Tr{[R(m)Zm]†[R(m)Zm]} = csc2 x[ρ1(m)2λ(r)2m + ρ2(m)2µ(r)2m].

Thus, the normalization condition (2.5) and the condition for a resolution of the identity (2.6)
demand the following:

N(|Z|) = csc2 x

∞∑
m=0

[ρ1(m)2λ(r)2m + ρ2(m)2µ(r)2m] < ∞, (2.9)

and

2π

(
I1 0
0 I2

)
= I2, (2.10)
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where

I1 =
∫ ∞

0
N(|Z|)−1ρ1(m)2λ(r)2m csc2 x dν,

I2 =
∫ ∞

0
N(|Z|)−1ρ2(m)2µ(r)2m csc2 x dν.

Let us solve this problem for some special values.

(a) Fix x = π
4 , λ(r) = r, µ(r) = 2r, ρ1(m) = 1√

m!
and ρ2(m) = 1√

4mm!
. Further, fix the

measure as dν = 2
π
r dr . Then, (2.9) and (2.10) take the form

N(|Z|) = 4
∞∑

m=0

r2m

m!
= 4 er2

, (2.11)

2πI1 = 2πI2 = π

m!

∫ ∞

0
e−r2

r2m 2

π
r dr = 1. (2.12)

(b) For x = π
6 , λ(r) = 3r, µ(r) = 2r, ρ1(m) = 1√

9mm!
and ρ2(m) = 1√

4mm!
, let us take the

measure to be dν = 2
π
r dr . Then, (2.9) and (2.10) become (2.11) and (2.12).

Now, let us look at a more systematic way of building examples.

2.1. A particular class of VCS with the R–Z ordering

Let B be an n×n fixed matrix such that BBT = BT B = In. Let D = diag(f1(z1), . . . , fn(zn)),
where zj = rj eiζj , rj ∈ Dj (the domain of rj ) and ζj ∈ [0, 2π). Form

Z = BDBT . (2.13)

Then,

Zm = BDmBT .

Let

R(m) = (ρ1(m)C1, ρ2(m)C2, . . . , ρn(m)Cn)
T , (2.14)

where the Cj are the columns of B. We intend to have VCS as,

|Z, j 〉 = N(|Z|)−1/2
∞∑

m=0

R(m)Zmχj ⊗ φm. (2.15)

Since

[R(m)Zm][R(l)Zl]† = diag(ρ1(m)ρ1(l)f1(z1)
mf1(z1)

l
, . . . , ρn(m)ρn(l)fn(zn)

mfn(zn)
l
),

we have

Tr{[R(m)Zm)]†[R(m)Zm]} =
n∑

i=1

ρi(m)2|fi(zi)|2m

= ρ1(m)2|f1(z1)|2m + ρ2(m)2|f2(z2)|2m + · · · + ρn(m)2|fn(zn)|2m,

and the normalization condition becomes

N(|Z|) =
∞∑

m=0

n∑
i=1

ρi(m)2|fi(zi)|2m. (2.16)
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Setting then

dµ = dν(ζ1, . . . , ζn) dλ(r1, . . . , rn), (2.17)

with

dλ(r1, . . . , rn) = N(|Z|)W(r1, r2, . . . , rn) dr1 dr2 . . . drn, (2.18)

dν(ζ1, . . . , ζn) = dζ1 . . . dζn

πn
, (2.19)

and assuming that∫
D1

· · ·
∫

Dn

∫ 2π

0
· · ·

∫ 2π

0
fk0

(
zk0

)m
fk0

(
zk0

) l

dµ =
{

0 if m �= l

πnρk0(m) if m = l
(2.20)

for some k0 ∈ {1, 2, . . . , n}, and∫
D1

· · ·
∫

Dn

∫ 2π

0
· · ·

∫ 2π

0
|fk(zk)|2m dµ = πnρk(m)

for all k ∈ {1, 2, . . . , n} − {k0}, if the series in (2.16) converges, then the states in (2.15) form
a set of VCS. Illustrative examples can easily be seen.

3. VCS with the Z–R ordering

So far, we had the matrix R(m) on the left of Zm. If we change the ordering the construction
fails in most of the cases developed above. In this section, we show that the construction can
be however carried out in the Z–R ordering, that is, when R(m) is on the right of Zm. Let us
give a simple way of getting VCS of this sort. Consider R(m) and Z such that

Z = B eiθ , (3.1)

R(m)R(m)† = R(m)†R(m) = ρ(m)In, and (3.2)

BmBm† = Bm†Bm = f (|Z|)mIn. (3.3)

For instance, Clifford-type matrices satisfy (3.3) [20]. Therefore, we can construct VCS as

|Z, j 〉 = N(|Z|)−1/2
∞∑

m=0

ZmR(m)χj ⊗ φm, j = 1, 2, . . . , n, (3.4)

provided that
∞∑

m=0

f (|Z|)mρ(m) < ∞, and
∫
R

f (|Z|)m dµ = ρ(m), (3.5)

where R is the parametrization domain of B, and dµ is a measure on it. An illustrative example
can easily be seen.

4. The generalized oscillator algebra

We aim in this section to define a generalized oscillator algebra related to the Z–R ordering
in the construction of VCS. To this end, we define a generalized factorial with matrices, and,
thereby, we define a generalized oscillator algebra for the states in (3.4). Let us recall first
how this construction was done for the states (1.1).

Let

xm = ρ(m)

ρ(m − 1)
, for m ∈ N

∗. (4.1)
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Then, the so-called generalized factorial can be defined as

ρ(m) = xmxm−1 . . . x1 = xm!, ∀m ∈ N
∗, (4.2)

with x0! := 1. For an orthonormal basis {φm}∞m=0 of the Hilbert space H, the generalized
annihilation, creation, and number operators are defined respectively as (see [1])

aφm = √
xmφm−1, with aφ0 = 0,

a†φm = √
xm+1φm+1,

nφm = xmφm,

and the commutators take the form

[a, a†]φm = (xm+1 − xm)Iφm,

[n, a]φm = −(xm − xm−1)aφm,

[n, a†]φm = (xm+1 − xm)a†φm.

The CS, |z〉 are eigenvectors of the annihilation operator a, that is, a|z〉 = z|z〉. Under
the commutation operation, these three operators generate a Lie algebra which is called the
generalized oscillator algebra, and denoted by Uosc. In general, the dimension of this algebra
is not finite. From the commutation relations, it is obvious that the dimension is completely
depending on the form of xm.

In the same spirit, let us define, for an n × n matrix R(m),

xm = R(m)R(m − 1)−1, m ∈ N
∗. (4.3)

Therefore, we can define

for m � 1, xm! = xmxm−1 . . . x1 = R(m), and x0! = In, (4.4)

where we have assumed that R(m) is invertible for all m � 1 and R(0) = In. Here,
the annihilation, creation, and number operators have to be defined on the basis {χj ⊗
φm}m�0,j=1,...,n. To this end, let us consider the n × n elementary matrices Eij , i, j =
1, 2, . . . , n, which have each a unit in the (i, j) th position and zero elsewhere. Note that, for
i, j, k, � = 1, 2, . . . , n,

EijEk� = δjkEi�, (4.5)

EkxmE� = (xm)klEk�, (4.6)

xmEk� =
n∑

i=1

(xm)ikEi�, and Ek�xm =
n∑

i=1

(xm)�iEki, (4.7)

Ek�χ
j = δ�jχ

k, (4.8)

where we have denoted Ek = Ekk , and δkj is the Kronecker symbol. Since xm does not depend
on j , for each j , we can define a set of annihilation, creation and number operator. Let us
denote them by Aj,A

†
j , Nj , with

Aj = Ej ⊗ a, A
†
j = Ej ⊗ a†, Nj = Ej ⊗ n. (4.9)

The action of these operators on the basis elements of Ĥ should be understood in the following
way: for each j, k = 1, . . . , n, we define

Akχ
j ⊗ φm = x−1

m Ekχ
j ⊗ φm−1 = δkj x

−1
m χk ⊗ φm−1, with Akχ

j ⊗ φ0 = 0, (4.10)

A
†
kχ

j ⊗ φm = x−1
m+1Ekχ

j ⊗ φm+1 = δkj x
−1
m+1χ

k ⊗ φm+1, (4.11)
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Nkχ
j ⊗ φm = (

x−1
m Ek

)2
χj ⊗ φm = δkj x

−1
m Ekx

−1
m χk ⊗ φm

= δkj

(
x−1

m

)
kk

x−1
m χk ⊗ φm. (4.12)

The commutators take then the form[
Ak,A

†
�

]
χj ⊗ φm = {

δ�j x
−1
m+1Ekx

−1
m+1χ

� − δkjx
−1
m E�x

−1
m χk

} ⊗ φm

= {
δ�j

(
x−1

m+1

)
k�

x−1
m+1χ

k − δkj

(
x−1

m

)
�k

x−1
m χ�

} ⊗ φm,

[Nk,A�]χj ⊗ φm = {
δ�j

(
x−1

m−1

)
kk

x−1
m−1Ekx

−1
m χ� − δkj

(
x−1

m

)
�k

x−1
m E�kx

−1
m χk

} ⊗ φm−1

= {
δ�j

(
x−1

m−1

)
kk

(
x−1

m

)
k�

x−1
m−1χ

k − δkj

(
x−1

m

)
�k

(
x−1

m

)
kk

x−1
m χ�

} ⊗ φm−1,[
Nk,A

†
�

]
χj ⊗ φm = x−1

m+1

{
δ�j

(
x−1

m+1

)
kk

Ekx
−1
m+1χ

� − δkj

(
x−1

m

)
�k

E�kx
−1
m χk

} ⊗ φm+1

= x−1
m+1

{
δ�j

(
x−1

m+1

)
kk

(
x−1

m+1

)
k�

χk − δkj

(
x−1

m

)
�k

(
x−1

m

)
kk

χ�
} ⊗ φm+1.

We can therefore define the ‘global’ annihilation, creation and number operators A,A†, and
N on Ĥ as

A =
n∑

k=1

Ak = In ⊗ a, A† =
n∑

k=1

A
†
k = In ⊗ a†, N =

n∑
k=1

Nk = In ⊗ n. (4.13)

We have then that

Aχj ⊗ φm = x−1
m χj ⊗ φm−1 = Ajχ

j ⊗ φm, with Aχj ⊗ φ0 = 0, (4.14)

A†χj ⊗ φm = x−1
m+1χ

j ⊗ φm+1 = A
†
jχ

j ⊗ φm, (4.15)

Nχj ⊗ φm = (
x−1

m

)
jj

x−1
m χj ⊗ φm = Njχ

j ⊗ φm, (4.16)

and the commutators read

[A,A†]χj ⊗ φm = (
x−2

m+1 − x−2
m

)
[In ⊗ I ]χj ⊗ φm, (4.17)

[N,A]χj ⊗ φm = −(
x−2

m − x−2
m−1

)
Aχj ⊗ φm, (4.18)

[N,A†]χj ⊗ φm = x−1
m+1

(
x−1

m+1 − x−2
m xm+1

)
A†χj ⊗ φm. (4.19)

In order to realize the VCS as eigenstates of the annihilation operator in the Z–R representation,
the states can be written in terms of xm as

|Z, j 〉 = N(|Z|)−1/2
∞∑

m=0

ZmR(m)χj ⊗ φm = N(|Z|)−1/2
∞∑

m=0

Zmxm!χj ⊗ φm, (4.20)

and the action of Ak reads,

Ak|Z, j 〉 = N(|Z|)−1/2
∞∑

m=1

Zmxm!δkjx
−1
m χj ⊗ φm−1

= δkjN(|Z|)−1/2
∞∑

m=0

Zm+1xm+1!x−1
m+1χ

j ⊗ φm

= δkjZ|Z, j 〉. (4.21)

It follows immediately that

A|Z, j 〉 =
n∑

k=1

Ak|Z, j 〉 =
n∑

k=1

δkjZ|Z, j 〉 = Z|Z, j〉, (4.22)

that is, the Z–R ordering VCS are eigenstates of the annihilation operator A.
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Let us look now at the algebra and the actions of the operators for a particular example.

Example 4.1. In example 2.2(a), R(m) had the form

R(m) =
( 1√

m!
1√
m!

1√
4mm!

− 1√
4mm!

)
.

When R(m)† is placed on the right of Zm, that is,

|Z, j〉 = N(|Z|)−1/2
∞∑

m=0

ZmR(m)†χj ⊗ φm,

the normalization factor and the resolution of the identity remain the same (the weight is the
same). For this particular R(m), xm wears the form

xm = 1

4
√

m

(
3 1
1 3

)
. (4.23)

Let

C = 1

2

(
3 −1

−1 3

)
, D = 1

2

(
5 −3

−3 5

)
, E = 1

4

(
3 1
1 3

)
.

Under the action of the operators defined as above and their commutators, in this particular
example, we have

A = C ⊗ a, A† = C ⊗ a†, N = 3
2C ⊗ n. (4.24)

In this case, the defining relations of the deformed oscillator algebra are

[A,A†] = D ⊗ I, [N,A] = −DA, [N,A†] = DA†. (4.25)

If we redefine the operators A,A†, N as

Ã = EA, Ã† = EA†, Ñ = Ã†Ã, (4.26)

we recover the classical harmonic oscillator algebra, with

[Ã, Ã†] = I2 ⊗ I, [Ñ, Ã] = −Ã, [Ñ, Ã†] = Ã†. (4.27)

In the following section we discuss physical applications of VCS.

5. Physical examples

In this section we consider two physical examples. As a first example we construct VCS for
a special case of the Jaynes–Cummings model and study some physical properties. In the
second example we derive VCS for a conditionally exactly solvable supersymmetric harmonic
oscillator.

5.1. Example: Jaynes–Cummings model

Let us consider the well-known Jaynes–Cummings Hamiltonian [16, 21]. It is diagonalizable,
and it describes a two-level atom interacting with a single mode interaction field. In the
rotating wave approximation, it reads (h̄ = 1)

HJC = ω

(
a†a +

1

2

)
σ0 +

ω0

2
σ3 + κ(a†σ− + aσ+) (5.1)



Vector coherent states with matrix moment problems 9541

where ω is the field mode frequency, ω0 is the atomic frequency, κ is a coupling constant,
σ0 = I2 is the 2 × 2 identity matrix, σ1, σ2, σ3 are the Pauli matrices and

σ+ = σ1 + iσ2, σ− = σ1 − iσ2. (5.2)

The Hamiltonian (5.1) and its generalizations have been used to study several physical
problems (for example, atomic interactions with electromagnetic fields [22, 21], spontaneous
emissions in cavity [23], Rabi oscillations [24], ions in harmonic traps [25] and quantum
computations [26]). In the following we construct VCS for a special case of the HJC. This
set of VCS can be used to compute physical quantities associated with the problem under
consideration. We shall compute expectation values, dispersion, average energy and the
signal-to-quantum noise ratio (SNR).

It is known that the Hamiltonian HJC can be diagonalized as

O†HJCO = HD =
(

HD(+) 0
0 HD(−)

)
,

where O is the diagonalization operator. From the diagonal form the energy eigenvalues can
be obtained as

E+
n = ωn + κr(n) and E−

n = ω(n + 1) − κr(n + 1),

where r(n) = √
δ + n, δ = (

�
2κ

)2
and � = ω − ω0 is the detuning with � > 0. Since � > 0

we have E−
n+1 > E−

m. If 0 < κ/ω � 2
√

δ + 1 the energies E+
n are strictly increasing and non-

degenerate [16]. Let

ω± = ω ± κ2

�
and e±

n = E±
n − E±

0 .

In the weak-coupling limit case we expand e±
n and by keeping at most terms of order 2 in κ

we get [16]

e±
n (κ
) = ω±(κ)n.

In this case, let us again denote the diagonalized version of the Hamiltonian HJC by HD and
let ψ±

n be the corresponding normalized energy states. Set

ρ±(n) = e±
1 e±

2 , . . . , e±
n = [ω±(κ)]n�(n + 1).

Since the Hilbert space of HJC can be taken [16] as the linear span of{
ψ−

n =
(

0
|n〉

)
, ψ+

n =
(|n〉

0

)
: ñ = 0, 1, 2, . . .

}
we make the following identification:

ψ+
n :=

(
φn

0

)
= χ1 ⊗ φn and ψ−

n :=
(

0
ψn

)
= χ2 ⊗ φn, (5.3)

where {χ1, χ2} is the natural basis of C
2 and {φn} is an orthonormal basis of a Hilbert space

H. Set

R(n) = diag(ρ+(n), ρ−(n)) and Z = diag(z1, z2).

|Z, j 〉 = N (Z)−
1
2

∞∑
n=0

R(n)−
1
2 Znχj ⊗ φn; j = 1, 2

(5.4)

forms a set of CS for the Hamiltonian HD , where z1 = r1 eiθ1 , z2 = r2 eiθ2 , r1, r2 ∈ [0,∞) and
θ1, θ2 ∈ [0, 2π). In this case, the normalization factor is given by

N (Z) = er2
1 /ω+(κ) + er2

2 /ω−(κ)
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and a resolution of the identity is obtained with the measure

dµ(Z) = r1r2

π2ω+(κ)ω−(κ)
e−r2

1 /ω+(κ) e−r2
2 /ω−(κ)N (Z) dr1 dr2 dθ1 dθ2.

Let c1, c2 ∈ C with |c1|2 + |c2|2 = 1 then the vectors

|Z〉 = c1|Z, 1〉 + c2|Z, 2〉 (5.5)

form a general set of CS for the Hamiltonian HD and these CS can be transformed back to
the original Hamiltonian using the unitary operator O. Further, under this transformation the
mean values are invariant [16]. For x ∈ R

+ let

U =
(

cos x −sin x

sin x cos x

)
since U is a unitary matrix, in (5.4) if we replace R(n)−

1
2 Zn by UR(n)−

1
2 ZnU † the resulting

vectors still form a set VCS with the same normalization factor as that of (5.4). In this case
a resolution of the identity is obtained with the measure dζ(Z,U) = dµ(Z) dν(U) where
dν(U) is the normalized invariant measure of R

+. Further observe that

U |Z, k〉U † �= N (Z)−
1
2

∞∑
n=0

UR(n)−
1
2 ZnU †χk ⊗ φn = |Z,U, k〉. (5.6)

Let

|z1〉 = 1

er2
1 /ω+(κ) + er2

2 /ω−(κ)

∞∑
n=0

zn
1√

ω+(κ)nn!
φn

|z2〉 = 1

er2
1 /ω+(κ) + er2

2 /ω−(κ)

∞∑
n=0

zn
2√

ω−(κ)nn!
φn.

Then the states |Z,U, k〉 can be explicitly written as

|Z,U, 1〉 =
(

cos2 x|z1〉 + sin2 x|z2〉
sin x cos x(|z1〉 − |z2〉)

)
, |Z,U, 2〉 =

(
sin x cos x(|z1〉 − |z2〉)
sin2 x|z1〉 + cos2 x|z2〉

)
.

If we set x = 0 in |Z,U, k〉 we recover |Z, k〉. In (5.4) if we replace Z and R(n)−
1
2 respectively

by UZU † and (
√

ρ+(n)C1,
√

ρ−(n)C2)
T , where C1 and C2 are the column vectors of U, by

the argument of the section 2.1 we can have a set of VCS associated with the Hamiltonian HD .
In fact the sets of VCS (5.4) and (5.6) can be considered as a blend of standard spin CS and
the canonical CS with n! replaced by ω±(κ)nn![3, 13]. Thus these VCS may be considered
as a coherent state wavefunction of a non-relativistic two-level particle in the weak-coupling
limit. In the weak-coupling limit case, the Hamiltonian HD can be written as

HD =
(

HD(+) 0

0 HD(−)

)
=

(
ω+a

†a 0

0 ω−a†a

)

=
(√

ω+a
† 0

0
√

ω−a†

)(√
ω+a 0

0
√

ω−a

)
= A†A,

where aφn = √
nφn−1 and a†φn = √

n + 1φn+1. A and A† are the annihilation and creation
operators for HD . Let N = A†A = HD . We can also define the self-adjoint quadrature
operators

Q = A + A†
√

2
, P = A − A†

i
√

2
.
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Under the interpretation that the constructed VCS are the coherent state wavefunction of
a two-level particle, the following mean values can be interpreted as the average values
of the observables that we would expect to obtain for the particle from a large number of
measurements. The mean value of an operator F in a state ψ is given by 〈F 〉ψ = 〈ψ |F |ψ〉.
Let

G(r1, r2) = er2
1 /ω+

er2
1 /ω+ + er2

2 /ω−
, G(r1, r2) = er2

2 /ω−

er2
1 /ω+ + er2

2 /ω−
.

Let us see the mean values of the operators associated with HD in the states (5.4).

〈A〉|Z,1〉 = z1G(r1, r2), 〈A〉|Z,2〉 = z2G(r1, r2), 〈A†〉|Z,1〉 = z1G(r1, r2),

〈A†〉|Z,2〉 = z2G(r1, r2), 〈HD〉|Z,1〉 = r2
1 G(r1, r2), 〈HD〉|Z,2〉 = r2

2 G(r1, r2)

〈Q〉|Z,1〉 =
√

2r1 cos θ1G(r1, r2), 〈Q〉|Z,2〉 =
√

2r2 cos θ2G(r1, r2)

〈P 〉|Z,1〉 =
√

2r1 sin θ1G(r1, r2), 〈P 〉|Z,2〉 =
√

2r2 sin θ2G(r1, r2).

Since G(r1, r2),G(r1, r2) < 1, the above mean values are the truncated version of the ordinary
harmonic oscillator mean values. Further, since the vectors χ1 ⊗φn and χ2 ⊗φn are orthogonal
the mean values of the operators in the general set of VCS (5.5) can be directly obtained from
the calculated mean values. For example,

〈Q〉|Z〉 = |c1|2〈Q〉|Z,1〉 + |c2|2〈Q〉|Z,2〉. (5.7)

The mean value of HD in the states |Z,U, k〉 of (5.6) takes the form

〈HD〉|Z,U,1〉 = r2
1 cos2 xG(r1, r2) +

r2
2 ω+

ω−
sin2 xG(r1, r2)

〈HD〉|Z,U,2〉 = r2
1 ω−
ω+

sin2 xG(r1, r2) + r2
2 cos2 xG(r1, r2),

which are the average energies of the particle, in the weak-coupling limit, in the coherent state
wavefunctions |Z,U, k〉. Here again one can write a general set of VCS

|Z,U 〉 = c′
1|Z,U, 1〉 + c′

2|Z,U, 2〉, (5.8)

where c′
1, c

′
2 ∈ C with |c′

1|2 + |c′
2|2 = 1, and obtain the mean value of HD in the general set

of VCS using a relation similar to (5.7). Roughly speaking, the dispersion of an observable
characterizes ‘fuzziness’ [27]. The dispersion of an operator F in a state |ψ〉 is given by

(�F)2
|ψ〉 = 〈ψ |F 2|ψ〉 − 〈ψ |F |ψ〉2.

In order to obtain the dispersion, first we calculate the mean values of H 2
D .〈

H 2
D

〉
|Z,1〉 = r2

1

(
r2

1 + ω+
)
G(r1, r2),

〈
H 2

D

〉
|Z,2〉 = r2

2

(
r2

2 + ω−
)
G(r1, r2).

For the states (5.6) we have〈
H 2

D

〉
|Z,U,1〉 = r2

1

(
r2

1 + ω+
)

cos2 xG(r1, r2) +
ω2

+r
2
2

(
r2

2 + ω−
)

ω2−
sin2 xG(r1, r2),

〈
H 2

D

〉
|Z,U,2〉 = ω2

−r2
1

(
r2

1 + ω+
)

ω2
+

sin2 xG(r1, r2) + r2
2

(
r2

2 + ω−
)

cos2 xG(r1, r2).

For the general sets of states (5.5) and (5.8), the mean value of H 2
D can be obtained using a

relation similar to (5.7). The dispersion of HD in different sets of VCS is now straightforward.
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In the same manner we obtain the dispersion of P and Q as follows:

(�Q)2
|Z,1〉 = 2r2

1 cos2 θ1G(r1, r2)G(r1, r2) +
ω+

2
G(r1, r2)

(�Q)2
|Z,2〉 = 2r2

2 cos2 θ2G(r1, r2)G(r1, r2) +
ω−
2

G(r1, r2)

(�P )2
|Z,1〉 = 2r2

1 sin2 θ1G(r1, r2)G(r1, r2) +
ω+

2
G(r1, r2)

(�P )2
|Z,2〉 = 2r2

2 sin2 θ2G(r1, r2)G(r1, r2) +
ω−
2

G(r1, r2).

Thereby one can obtain the uncertainty product (�Q)2
|Z,1〉(�P )2

|Z,1〉 in a straightforward way.
Noise is, loosely, any disturbance tending to interfere with the normal operation of a system.
For a state |ψ〉 the signal-to-quantum-noise ratio is defined as

σ|ψ〉 = 〈Q〉|ψ〉
(�Q)2

|ψ〉
.

A high SNR indicates that the noise dominates the measurement, a low SNR indicates a
relatively clean measurement. The SNR for various VCS can be seen readily and thereby the
noise associated with the measurements can be observed. For example,

σ|Z,1〉 = 2r2
1 cos2 θ1G(r1, r2)

2

4r2
1 cos2 θ1G(r1, r2)G(r1, r2) + ω−G(r1, r2)

.

Let Z±(t) = Z e−iω±t . The time evolution operator of HD takes the form

T (t) = e−iHDt = diag(e−iHD(+)t , e−iHD(−)t ).

Since T (t)χ1 ⊗φn = e−iω+ntχ1 ⊗φn and T (t)χ2 ⊗φn = e−iω−ntχ2 ⊗φn we have T (t)|Z, 1〉 =
|Z+(t), 1〉 and T (t)|Z, 2〉 = |Z−(t), 2〉. Thus the VCS |Z, k〉 are temporally stable. Similarly
the time evolution of |Z,U, 1〉, |Z,U, 2〉 and the general sets of VCS can be seen. In terms
of the state |ψ〉, the so-called Mandel parameter is given by

QM
|ψ〉 = (�HD)2

|ψ〉
〈HD〉|ψ〉

− 1.

Here again it is straightforward to calculate the Mandel parameter for the classes of VCS
discussed above. For example,

QM
|Z,1〉 = r2

1 G(r1, r2) + ω+ − 1.

5.2. The radial harmonic oscillator with unbroken SUSY

For the sake of completeness, first we briefly introduce the radial harmonic oscillator with
unbroken SUSY (for short RHO). In the supersymmetric set-up the SUSY Hamiltonian can
be written as

H =
(

H+ 0
0 H−

)
,

where (units are such that h̄ = m = 1)

H± = −1

2

d2

dx2
+ V±(x), V±(x) = 1

2
(W 2(x) ± W ′(x))
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and W : M −→ R is the SUSY potential with M being the configuration space. The
SUSY partner Hamiltonians can be written as

H+ = AA† � 0, H− = A†A � 0,

where A and A† are the supercharge operators

A = 1√
2

(
d

dx
+ W(x)

)
, A† = 1√

2

(
− d

dx
+ W(x)

)
.

Since AH− = H+A and H−A† = A†H+ the Hamiltonians H+ and H− are essentially
isospectral [30, 31]. However, there may exist an additional vanishing eigenvalue for one
of these Hamiltonians. In this case SUSY is said to be unbroken and by convention this
additional eigenvalue is assumed to belong to H−. For the unbroken SUSY the situation can
be summarized as follows:

H±ψ±
n = E±

n ψ±
n , n = 0, 1, 2, . . .

where

E−
0 = 0, ψ−

0 (x) = C exp

(
−

∫
W(x) dx

)
E−

n+1 = E+
n > 0, ψ−

n+1(x) = √
E+

nA†ψ+
n (x)

ψ+
n (x) =

√
E−

n+1Aψ−
n+1(x)

and C is a normalization constant. We consider a conditionally exactly solvable RHO with
M = R

+ and

V+(x) = x2

2
+

(γ + 1)(γ + 1)

2x2
+ ε − γ − 3

2
,

V−(x) = x2

2
+

γ (γ + 2)

2x2
− ε − γ − 1

2
+

u′(x)

u(x)

(
2x − 2

γ + 1

x
+

u′(x)

u(x)

)
,

where γ � 0, ε > −1 and

u(x) = 1F1

(
1 − ε

2
,−γ − 1

2
− x2

)
+ βx2γ +3

1F1

(
2 + γ − ε

2
,

5

2
+ γ,−x2

)
.

Further, the positivity of the solutions requires the following conditions on the parameters (for
details see [31]):

0 <
�

(−γ − 1
2

)
�(ε/2 − γ − 1)

, |β| <
�

(−γ − 1
2

)
�

(
1 + ε

2

)
�(ε/2 − γ − 1)�(5/2 + γ )

.

With these potentials, as SUSY remain unbroken for all the allowed values of the parameters
we have

H±ψ±
n = E±

n ψ±
n

where

E−
n+1 = E+

n = 2n + 1 + ε, E−
0 = 0, n = 0, 1, 2, . . .

and ψ±
n are the normalized energy states. The explicit expressions of ψ±

n and further details
on the RHO can be found in [30, 31]. Let e+

n = E+
n − E+

0 = 2n, thereby we have

0 = e+
0 < e+

1 < · · · < e+
n < · · · .
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Since E−
0 = 0 and E−

n strictly increasing, we do not have to shift the spectrum backward. Let

ρ+(n) = e+
1e+

2 · · · e+
n = 2n�(n + 1)

ρ−(n) = E−
1 E−

2 · · · E−
n = 2n

(
ε + 3

2

)
n

where (a)n = �(n + a)/�(a) is the Pochhammer symbol. Let us identify the energy states
ψ±

n to χj ⊗ φn, j = 1, 2 as stated in (5.3) and take

R(n) = diag(ρ+(n), ρ−(n)), Z = diag(z1, z2),

where z1, z2 are as in the previous example. With the above set-up the set of vectors

|Z, j 〉 = N (Z)−
1
2

∞∑
n=0

R(n)−
1
2 Znχj ⊗ φn, j = 1, 2 (5.9)

forms a set of CS for the RHO, where

N (Z) = er2
1 /2 + 1F1

(
1,

ε + 3

2
,
r2

2

2

)
> 0,

which is finite for all r1, r2 > 0. A resolution of the identity is obtained with the measure

dµ(Z) = N (Z)
r1r2

π22
ε+3

2 �
(

ε + 3
2

) e−r2
1 /2 e−r2

2 /2 dr1 dr2 dθ1 dθ2.

6. Remarks and discussion

In the case of broken SUSY H+ and H− are strictly isospectral. The eigenvalues and
eigenfunctions are related as follows:

E−
n = E+

n > 0

ψ−
n (x) = √

E+
nA†ψ+

n (x)

ψ+
n (x) =

√
E−

n Aψ−
n (x).

In this case, it may be interesting to note that the quaternionic VCS discussed in [13, 14] can
be realized as CS of the supersymmetric Hamiltonian

H =
(

H+ 0
0 H−

)
.

For this, let

e+
n = e−

n = E+
n − E+

0 = E−
n − E−

0 .

Assume that

0 = e+
0 = e−

0 < e+
1 = e−

1 < · · · < e+
n = e−

n < · · · .
Note that the radial harmonic oscillator with broken SUSY given in [31] satisfies this
requirement. Let ρ(n) = e+

n! = e−
n ! and Z = diag(z1, z2). Identify the wavefunctions

ψ±
n to χj ⊗ φn as before. The set of vectors

|Z, j 〉 = N (Z)−
1
2

∞∑
n=0

Zn

√
ρ(n)

χj ⊗ ψn, j = 1, 2 (6.1)
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forms a set of CS for the Hamiltonian H. Let U ∈ SU(2) then

|Z, j〉 = N (Z)−
1
2

∞∑
n=0

(UZU †)n√
ρ(n)

χj ⊗ ψn, j = 1, 2 (6.2)

form a set of CS with the same normalization constant of (6.1). In (6.1) if a resolution
of the identity is obtained with the measure dµ(Z) then dµ(Z) dν(U) produce a resolution
of the identity for the states (6.2), where dν(U) is the normalized invariant measure of
SU(2) [14]. If z1 = z, z2 = z and e+

n = e−
n = n then we obtain the quaternionic VCS

discussed in [13] (for a detailed explanation see [14]). In such a case, under the set-up
presented in [13], the states (6.2) satisfy the three equivalent definitions of the harmonic
oscillator canonical CS (for details see [13]). However, since the partner Hamiltonians H+ and
H− do not posses the same ladder operators [30, 31] for the Hamiltonian H the same properties
may not be achieved in the present set-up. In the literature, supercoherent states have been
studied for a long time [32–35]. Main attention has been paid on the supersymmetric linear
harmonic oscillator. However, the methods used in the literature were different from the above
set-up. In most cases, supercoherent states were derived as eigenstates of a supersymmetric
annihilation operator [35, 34]. For the supersymmetric harmonic oscillator they were also
realized as the minimum uncertainty states with certain exceptions [35]. In [34] using a
supergroup, supercoherent states were derived with a displacement operator. In a future work,
for various supersymmetric Hamiltonians we shall study these features in detail under the
VCS set-up.

Acknowledgments

The authors are grateful to one of the referees for valuable comments.

References

[1] Ali S T, Antoine J-P and Gazeau J-P 2000 Coherent States, Wavelets and their Generalizations (New York:
Springer)

[2] Klauder J R and Skagerstam B S 1985 Coherent States, Applications in Physics and Mathematical Physics
(Singapore: World Scientific)

[3] Pérélomov A M 1986 Generalized Coherent States and Their Applications (Berlin: Springer)
[4] Borzov V V 2001 Integral Transforms and Special Functions 12 115–38
[5] Odzijewicz A 1998 Commun. Math. Phys. 192 183–215
[6] Barut A O and Girardello L 1971 Commun. Math. Phys. 21 41–55
[7] Cooper L I 1993 J. Phys. A: Math. Gen. 26 1601–23
[8] Popov D 2001 J. Phys. A: Math. Gen. 34 5283–96
[9] Klauder J R, Penson K and Sixdeniers J-M 2001 Phys. Rev. A 64 013817

[10] Nieto M M and Simmons L M 1979 Phys. Rev. D 20 1321–31
[11] Gazeau J-P and Klauder J R 1999 J. Phys. A: Math. Gen. 32 123–32
[12] Novaes M and Gazeau J-P 2003 J. Phys. A: Math. Gen. 36 199–212
[13] Thirulogasanthar K and Ali S T 2003 J. Math. Phys. 44 5070–83
[14] Ali S T, Englis M and Gazeau J-P 2004 J. Phys. A: Math. Gen. 37 6067–89
[15] Rowe D J and Repka J 1991 J. Math. Phys. 32 2614–34
[16] Daoud M and Hussin V 2002 J. Phys. A: Math. Gen. 35 7381–402
[17] Janowicz M W and Ashbourn J M A 1997 Phys. Rev. A 55 2348–59
[18] Ashraf M M 1994 Phys. Rev. A 50 5116–21
[19] Gao Y F, Feng J and Shi S R 2002 Int. J. Theor. Phys. 41 867–75
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